Research shows residual hydraulic fracturing water no risk to groundwater – Farm and Dairy

UNIVERSITY PARK, Pa. — Hydraulic fracturing, fracking or hydrofracturing, raises many concerns about potential environmental impacts, especially water contamination.

Currently, data show the majority of water injected into wells stays underground, triggering fears it might find its way into groundwater.

Help allay fears

New research by a team of scientists should help allay those fears.

In a paper published in the current issue of the Journal of Unconventional Oil and Gas Resources, Terry Engelder, professor of geosciences, Penn State; Lawrence Cathles, professor of earth and atmospheric sciences, Cornell University; and Taras Bryndzia, geologist, Shell International Exploration and Production Inc., report injected water which remains underground is sequestered in the rock formation and therefore does not pose a serious risk to water supplies.

Hydraulic fracturing is a drilling technique commonly used to extract gas from previously inaccessible ‘tight’ gas reserves, including gas trapped in shale formations such as the Marcellus.

During this technique, between 1.2 and 5 million gallons of water mixed with sand and chemical additives are injected at high pressure into each well to fracture the rock and release the gas.

Typically less than half of the injected water returns to the surface as ‘flowback’ or, later, production brine, and in many cases recovery is less than 30 percent.

In addition to the chemical additives, flowback water contains natural components of the gas shale including salt, some metals and radionuclides and could impair water quality if released without proper treatment.

While flowback water can be managed and treated at the surface, the fate of the water left in place, called residual treatment water or RTW, was previously uncertain.

Some have suggested RTW may be able to flow upward along natural pathways, mainly fractures and faults, and contaminate overlying groundwater.

Others have proposed natural leakage of the Marcellus is occurring without human assistance through high-permeability fractures connecting the Marcellus directly to the water table and that hydraulic fracturing could worsen this situation.

Contamination not likely

The researchers report ground water contamination is not likely because contaminant delivery rate would be too small even if leakage were possible, but more importantly, upward migration of RTW is not plausible due to capillary and osmotic forces that propel RTW into, not out of, the shale.

Their study indicates RTW will be stably retained within the shale formation due to multiphase capillary phenomena.

“Capillary forces and coupled diffusion–osmosis processes are the reasons the brines and the RTW are not free to escape from gas shale,” said Engelder.

“The most direct evidence of these forces is the observation that more than half the treatment waters are not recovered. Introducing treatment water causes gas shale to act like a sponge based on the principles of imbibition.

“Imbibition into gas shale is made possible by the high capillary suction that a fine-grained, water-wet shale matrix can exert on water. As water is wicked into gas shale, the natural gas in the shale is pushed out. The capillary forces that suck the RTW into the gas shale keep it there.”

Estimating imbibition is complicated, but simple experiments conducted by the researchers show water can be readily imbibed into gas shale in quantities fully capable of sequestering RTW.

via Research shows residual hydraulic fracturing water no risk to groundwater – Farm and Dairy.